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Figure 2.6: Sphere and applied forces. (a) Sphere supported
with wires from top and spring at bottom; (b) free-body dia-
gram of forces acting on sphere.

Example 2.6: Free-Body Diagram of
an External Rim Brake
Given: The external rim brake shown in Fig. 2.7a.

Find: Draw a free-body diagram of each component of the
system.

Solution: Figure 2.7b shows each brake component as well
as the forces acting on them. The static equilibrium of each
component must be preserved, and the friction force acts op-
posite to the direction of motion on the drum and in the di-
rection of motion on both shoes. The 4W value in Fig. 2.7b
was obtained from the moment equilibrium of the lever. De-
tails of brakes are considered in Chapter 18, but in this chap-
ter it is important to be able to draw the free-body diagram
of each component.

2.7 Supported Beams

A beam is a structural member designed to support loading
applied perpendicular to its longitudinal axis. In general,
beams are long, often straight bars having a constant cross-
section. Often, they are classified by how they are supported.
Three major types of support are shown in Fig. 2.8:

1. A simply supported beam (Fig. 2.8a) is pinned at one
end and roller-supported at the other.

2. A cantilevered beam or cantilever (Fig. 2.8b) is fixed at
one end and free at the other.

3. An overhanging beam (Fig. 2.8c) has one or both of its
ends freely extending past its supports.
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Figure 2.7: External rim brake and applied forces, considered
in Example 2.6. (a) External rim brake; (b) external rim brake
with forces acting on each part. (Linear dimensions are in
millimeters.)

Two major parameters used in evaluating beams are strength
and deflection, as discussed in Chapter 5. Shear and bending
are the two primary modes of beam loading. However, if the
height of the beam is large relative to its width, elastic insta-
bility can become important and the beam can twist under
loading (see unstable equilibrium in Section 9.2.3).

2.8 Shear and Moment Diagrams

Designing a beam on the basis of strength requires first
finding its maximum shear and moment. This section de-
scribes three common and powerful approaches for devel-
oping shear and moment diagrams. Usually, any of these
methods will be sufficient to analyze any statically determi-
nate beam, so the casual reader may wish to emphasize one
method and then continue to the remaining sections.

2.8.1 Method of Sections

One way to obtain shear and moment diagrams is to apply
equilibrium to sections of the beam taken at convenient loca-
tions. This allows expression of the transverse shear force, V ,
and the moment, M , as functions of an arbitrary position, x,
along the beam’s axis. These shear and moment functions can
then be plotted as shear and moment diagrams from which
the maximum values of V and M can be obtained.
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Figure 2.8: Three types of beam support. (a) Simply sup-
ported; (b) cantilevered; (c) overhanging.

Design Procedure 2.2: Drawing
Shear and Moment Diagrams by the
Method of Sections
The procedure for drawing shear and moment diagrams by
the method of sections is as follows:

1. Draw a free-body diagram and determine all the sup-
port reactions. Resolve the forces into components act-
ing perpendicular and parallel to the beam’s axis.

2. Choose a position, x, between the origin and the length
of the beam, l, thus dividing the beam into two seg-
ments. The origin is chosen at the beam’s left end to
ensure that any x chosen will be positive.

3. Draw a free-body diagram of the two segments and use
the equilibrium equations to determine the transverse
shear force, V , and the moment, M .

4. Plot the shear and moment functions versus x. Note
the location of the maximum moment. Generally, it is
convenient to show the shear and moment diagrams di-
rectly below the free-body diagram of the beam.

5. Additional sections can be taken as necessary to fully
quantify the shear and moment diagrams.

Example 2.7: Shear and Moment
Diagrams by Method of Sections
Given: The bar shown in Fig. 2.9a.

Find: Draw the shear and moment diagrams.

Solution: For 0 ≤ x < l/2, the free-body diagram of the bar
section is as shown in Fig. 2.9b. The unknowns V and M are
positive. Applying the equilibrium equations gives

∑

Py = 0→ V = −
P

2
, (a)

∑

Mz = 0→M =
P

2
x. (b)

For l/2 ≤ x < l, the free-body diagram is shown in Fig. 2.9c.
Again, V and M are shown in the positive direction.

∑

Py = 0→
P

2
− P + V = 0, or V = P/2. (c)

∑

Mz = 0→M + P

(

x−
l

2

)

−
P

2
x = 0.

Therefore,

M =
P

2
(l − x). (d)

The shear and moment diagrams in Fig. 2.9d can be obtained
directly from Eqs. (a) to (d).

2.8.2 Direct Integration

Note that if q(x) is the load intensity function in the y-
direction, the transverse shear force is

V (x) = −

x
∫

−∞

q(x) dx, (2.4)

and the bending moment is

M(x) = −

x
∫

−∞

V (x) dx =

x
∫

−∞

x
∫

−∞

q(x) dx dx. (2.5)

For simple loading cases, direct integration is often the most
straightforward method of producing shear and moment di-
agrams. Since the integral of a curve is its area, graphically
producing a shear or moment diagram follows directly from
the loading. The only complication arises from point loadings
and their use in developing a shear diagram. With concen-
trated loadings, the shear diagram will take a “jump” equal
in magnitude to the applied load. The sign convention used
for moment diagrams is important; recall that the sign con-
vention described in Fig. 2.3b is used in this textbook.

Example 2.8: Shear and Moment
Diagrams by Direct Integration
Given: The beam shown in Fig. 2.10a. From static equilib-
rium, it can be shown that RA = 12 kN and RB = 4 kN in
the directions shown.

Find: The shear and moment diagrams by direct integration.
Determine the location and magnitude of the largest shear
force and moment.

Solution: The shear diagram will be constructed first. Con-
sider the loads on the beam and work from left to right to
construct the shear diagram. The following steps are fol-
lowed to construct the shear diagram:

1. At the left end (at x = 0), there is a downward acting
force. As discussed above, this means that the shear
diagram will see a jump in its value at x = 0. From
Eq. (2.4), a downward acting load leads to an upward
acting shear force (that is, its sign is opposite to the load-
ing). Thus, the diagram jumps upward by a magnitude
of 4 kN.

2. Moving to the right, this value is unchanged until x = 2
m, where a 12 kN concentrated load acts upward. This
results in a downward jump as shown.
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Figure 2.9: Simply supported beam. (a) Midlength load and
reactions; (b) free-body diagram for 0 < x < l/2; (c) free-
body diagram for l/2 ≤ x < l; (d) shear and moment dia-
grams.
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Figure 2.10: Beam for Example 2.8. (a) Applied loads and re-
actions; (b) shear diagram with areas indicated, and moment
diagram with maximum and minimum values indicated.

3. The constant distributed loading to the right of x = 2
m will result in a shear force that changes linearly with
respect to x. From Eq. (2.4), the magnitude of the total
change is the integral of the applied load, or just its area.
Thus, the total change due to the 2kN/m distributed
load from x = 2 to x = 6 is 8 kN, and since the dis-
tributed load acts downward, this change is upward in
the shear diagram because of the sign convention used
in Eq. (2.4). Therefore, the value of the shear force at
x = 6 is (−8 kN) + 8 kN = 0. The line from x = 2 to
x = 6 is shown.

4. At x = 6, there is a concentrated force associated with
the downwards acting force RB , so there is an upward
jump of 4 kN.

5. At x = 8, the upward acting force leads to a downward
jump of 4 kN, returning the shear to zero.

The bending moment is obtained from repeated applica-
tion of Eq. (2.5). However, note that the integral of the shear
force is the area under the shear force curve. The shear di-
agram just developed consists of rectangles and triangles,
where the area is calculated from geometry. The areas have
been indicated in the shear diagram. For example, the shear
diagram up to x = 2 consists of a rectangle with a height of
V = 4 kN and a base of x = 2 m. Thus, its area is 8 kN-m.
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The moment diagram is then constructed using the follow-
ing steps.

1. At a starting value of M = 0 at x = 0, the diagram will
be constructed from left to right. From x = 0 to x = 2 m,
the value of the shear diagram is positive and constant.
Integrating this curve results in a linear profile. Since
the shear diagram is positive, the moment that results
must be negative according to Eq. (2.5), and at x = 2 m,
the value is 8 kN-m. This linear profile is shown in the
figure.

2. From x = 2 m to x = 6 m, the shear diagram is linear
with respect to x, so that the moment diagram will be
quadratic. At x = 6 m, it is known that the moment
will have a value of 8 kN-m by summing the areas of
the shear diagram segments. The slope of the moment
curve is equal to the value of the shear curve, as seen
by taking the derivative of Eq. (2.5). Thus, the slope is
initially large and at x = 6 it is zero.

3. From x = 6 m to x = 8 m, the moment diagram has a
linear profile and ends at M = 0. This can be seen by
summing the areas in the shear diagram, remembering
that areas below the abscissa are considered negative.

The shear and moment diagrams are shown in Fig. 2.10b. It
can be seen that the largest magnitude of shear stress is at
x = 2 m and has a value of |V |

max
= 8 kN. The largest

magnitude of bending moment is |M |
max

= 8 kN-m.

2.8.3 Singularity Functions

If the loading is simple, the method for obtaining shear and
moment diagrams described in Sections 2.8.1 or 2.8.2 can be
used. Often, however, this is not the situation. For more com-
plex loading, methods such as singularity functions can be
used. A singularity function in terms of a variable, x, is writ-
ten as

fn(x) = 〈x− a〉n. (2.6)

where n is any integer (positive or negative) including zero,
and a is a reference location on a beam. Singularity functions
are denoted by using angular brackets. The advantage of us-
ing a singularity function is that it permits writing an analyt-
ical expression directly for the transverse shear and moment
over a range of discontinuities.

Table 2.2 shows six singularity and load intensity func-
tions along with corresponding graphs and expressions.
Note in particular the inverse ramp example. A unit step is
constructed beginning at x = a, and the ramp beginning at
x = a is subtracted. To have the negative ramp discontin-
ued at x = a + b, a positive ramp beginning at this point is
constructed; the summation results in the desired loading.

Design Procedure 2.3: Singularity
Functions
Some general rules relating to singularity functions are:

1. If n > 0 and the expression inside the angular brackets
is positive (i.e., x ≥ a), then fn(x) = (x − a)n. Note
that the angular brackets to the right of the equal sign
in Eq. (2.6) are now parentheses.

2. If n > 0 and the expression inside the angular brackets
is negative (i.e., x < a), then fn(x) = 0.

3. If n < 0, then fn(x) = 0.

4. If n = 0, then fn(x) = 1 when x ≥ a and fn(x) = 0
when x < a.

5. If n ≥ 0, the integration rule is

x
∫

−∞

〈x− a〉n =
〈x− a〉n+1

n+ 1
.

Note that this is the same as if there were parentheses
instead of angular brackets.

6. If n < 0, the integration rule is

x
∫

−∞

〈x− a〉ndx = 〈x− a〉n+1.

7. When n ≥ 1, then

d

dx
〈x− a〉n = n〈x− a〉n−1.

Design Procedure 2.4: Shear and
Moment Diagrams by Singularity
Functions
The procedure for drawing the shear and moment diagrams
by making use of singularity functions is as follows:

1. Draw a free-body diagram with all the applied dis-
tributed and concentrated loads acting on the beam,
and determine all support reactions. Resolve the forces
into components acting perpendicular and parallel to
the beam’s axis.

2. Write an expression for the load intensity function q(x)
that describes all the singularities acting on the beam.
Use Table 2.2 as a reference, and make sure to “turn off”
singularity functions for distributed loads and the like
that do not extend across the full length of the beam.

3. Integrate the negative load intensity function over the
beam length to get the shear force. Integrate the nega-
tive shear force distribution over the beam length to get
the moment, in accordance with Eqs. (2.4) and (2.5).

4. Draw shear and moment diagrams from the expres-
sions developed.

Example 2.9: Shear and Moment
Diagrams Using Singularity
Functions
Given: The same conditions as in Example 2.7.

Find: Draw the shear and moment diagrams by using a sin-
gularity function for a concentrated force located midway on
the beam.
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Table 2.2: Singularity and load intensity functions with corresponding graphs and expressions.

Concentrated 
moment

Singularity              Graph of q(x) Expression for q(x)

wo

a

y

x

ba

y

x

wo

a

y

x

Concentrated 
force

Unit step

Ramp

Inverse ramp

Parabolic shape

wo

a

y

x
b

P
y

x
a

M

y

x
a

q(x) = M <x a> 2

q(x) = P <x a> 1

q(x) = wo <x a> 0

q(x) =
wo <x a> 1

b

wo <x a> 1

b
q(x) = wo <x a> 0

q(x) = <x a> 2
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Figure 2.11: (a) Shear and (b) moment diagrams for Example 2.9.

Solution: The load intensity function for the simply sup-
ported beam shown in Fig. 2.9a is

q(x) =
P

2
〈x〉−1 − P

〈

x−
l

2

〉

−1

+
P

2
〈x− l〉−1

The shear expression is

V (x) = −

x
∫

−∞

[

P

2
〈x〉−1 − P

〈

x−
l

2

〉

−1

+
P

2
〈x− l〉−1

]

dx

or

V (x) = −
P

2
〈x〉0 + P

〈

x−
l

2

〉0

−
P

2
〈x− l〉0

Figure 2.11a shows the resulting shear diagrams. The dia-
gram at the top shows individual shear, and the diagram be-
low shows the composite of these shear components. The
moment expression is

M(x) = −

x
∫

−∞

[

−
P

2
〈x〉0 + P

〈

x−
l

2

〉0

−
P

2
〈x− l〉0

]

dx

or

M(x) =
P

2
〈x〉1 − P

〈

x−
l

2

〉1

+
P

2
〈x− l〉1

Figure 2.11b shows the moment diagrams. The diagram at
the top shows individual moments; the diagram at the bot-
tom is the composite moment diagram. The slope of M2 is
twice that of M1 and M3, which are equal. The resulting
shear and moment diagrams are the same as those found in
Example 2.7.

Example 2.10: Shear and Moment
Expressions Using Singularity
Functions
Given: A simply supported beam shown in Fig. 2.12a where
P1 = 8 kN, P2 = 5 kN, wo = 4 kN/m, and l = 12 m.

Find: The shear and moment expressions as well as their cor-
responding diagrams while using singularity functions.

Solution: The first task is to solve for the reactions at x = 0
and x = l. The force representation is shown in Fig. 2.12b.
Note that wo is defined as the load per unit length for the
central part of the beam. In Fig. 2.12b it can be seen that the
unit step wo over a length of l/2 produces a resultant force of
wol/2 and that the positive ramp over the length of l/4 can
be represented by a resultant vector of

wo

(

l

4

)(

1

2

)

or
wol

8

Also, note that the resultant vector acts at

x =

(

2

3

)(

l

4

)

=
l

6

From force equilibrium

0 = R1 + P1 + P2 +R2 −
wol

2
−

wol

8
(a)

R1 +R2 = −P1 − P2 +
5wol

8
(b)

Making use of moment equilibrium and the moment of the
triangular section load gives

(P1 + 2P2)l

4
−

wol
2

4
−

wol

8

(

l

6

)

+R2l = 0
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Figure 2.12: Simply supported beam examined in Example 2.10. (a) Forces acting on beam when P1 = 8 kN, P2 = 5 kN; wo = 4
kN/m; l = 12 m; (b) free-body diagram showing resulting forces; (c) shear and (d) moment diagrams.

or

R2 =
13wol

48
−

P1 + 2P2

4
(c)

Substituting Eq. (c) into Eq. (b) gives

R1 = −
3P1

4
−

P2

2
+

17wol

48
(d)

Substituting the given values for P1, P2, wo, and l gives

R1 = 8.5 kN and R2 = 8.5 kN (e)

The load intensity function can be written as

q(x) = R1〈x〉
−1 −

wo

l/4
〈x〉1 +

wo

l/4

〈

x−
l

4

〉1

+P1

〈

x−
l

4

〉

−1

+ P2

〈

x−
l

2

〉

−1

+wo

〈

x−
3l

4

〉0

+R2〈x− l〉−1

Note that a unit step beginning at l/4 is created by initiating a
ramp at x = 0 acting in the negative direction and summing
it with another ramp starting at x = l/4 acting in the positive

direction, since the slopes of the ramps are the same. The
second and third terms on the right side of the load intensity
function produce this effect. The sixth term on the right side
of the equation turns off the unit step. Integrating the load
intensity function gives the shear force as

V (x) = −R1〈x〉
0 +

2wo

l
〈x〉2 −

2wo

l

〈

x−
l

4

〉2

−P1

〈

x−
l

4

〉0

− P2

〈

x−
l

2

〉0

−wo

〈

x−
3l

4

〉1

−R2〈x− l〉0

Integrating the shear force gives the moment, and substitut-

ing the values for wo and l gives

M(x) = 8.5〈x〉1 +
2

9
〈x〉3 −

2

9
〈x− 3〉3 + 8〈x− 3〉1

+5〈x− 6〉1 + 2〈x− 9〉2 + 8.5〈x− 12〉1

The shear and moment diagrams are shown in Fig. 2.12c and

d, respectively.


